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Abstract. Following Morris and Luan Dehuai and Wybourne a simple method is given 
for the embedding 0,, --f S , ,  of ordinary and spin irreps in both n-dependent notation and 
in an n-independent reduced notation. Basic spin irrep and ordinary irreps are combined 
using the properties of Q-functions and raising operators in order to give a complete set 
of branching rules of 0,, + S,, for spin irreps. The modification rules for Q-functions given 
by Morris are redefined to yield a complete and unambiguous set of rules. 

1. Introduction 

The orthogonal groups 0, and the symmetric groups S, play an important role in 
nuclear and molecular models. 

Corresponding to every symmetric group S , , ,  there exist two spin groups r,, and 
r;, The characters of are simply related to r, (Morris 1962a, b, 1977). It has also 
been shown that the 2(n!)-order group r, is isomorphic to the linear fractional 
substitution representation group (Schur 191 1) of S,. 

The calculation of the characters of r, has been much studied. Although the 
decomposition 0, + S, for ordinary irreps has been known for a long time the corre- 
sponding problem for spin irreps has received scant attention. Recently (Luan Dehuai 
and Wybourne 1981) some techniques have been developed for the resolution of 
Kronecker products involving the spin representations of S, using Q-functions and 
Young’s raising operators. 

In this paper we shall first review the labelling of ordinary and spin irreps of 0, 
and S, in n-dependent and in reduced notation. We then present some simple 
techniques of 0, + S, branching for ordinary irreps. The 0, + S, branching for spin 
irreps is simplified and obtained in the form of a product of the basic spin irrep and 
ordinary irreps of S,l. Morris (1962a, b, 1977) has given a set of rules for modification 
of non-standard Q-functions. Computer implementation of these rules showed the 
need for a careful specification of these rules that would cater for all possibilities. We 
give such a specification of the modification rules. Finally we combine basic spin 
irreps and ordinary irreps to complete the 0, + S,, branching rule for spin irreps. Some 
examples are given. 

2. Reduced notation and labelling of representations of 0, and S .  

The concept of reduced notation for the labelling of representations was introduced 
by Murnaghan (1937) and was later used by Littlewood (1950) for the calculation of 
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inner plethysms and Kronecker products by treatment of the symmetric group S ,  as 
a subgroup of the linear group L,. 

The tensor irreps of 0, are usually labelled by [A] and the spin irreps by [A; A ]  
where A =  [A; 01 is the basic spin irrep. 

The tensor irreps of S ,  are labelled by { A }  and can be written as [n  - m, p] where 
(,U) is a partition of m. In reduced notation { A }  may then be written as (p ) .  For 
example an irrep (21) in reduced notation corresponds to (321) for S,. 

For the sake of simplicity, we shall use the same notation for the spin irreps of S ,  
as used for 0,. For example a spin irrep in reduced notation will be labelled by ( A ;  21) 
where A is the basic spin irrep of S , .  No confusion arises here in the use of A because 
under 0, +. S , A +  A. It is important to note here that (A;  21) corresponds to (321)' for 
S6 in Morris' notation (Morris 1962a, b). 

If ( n  - k - 1) is even then the spin irrep of S, is self-associated, otherwise it will 
split into an associated pair of spin irreps designated as {A; A}+ and {A; A}- ,  where k 
is the length of the partition ( A )  in the spin irrep (A;  A ) .  For example, the spin irrep 
( A ;  21) will form an associated pair {A; 21}+ and {A; 21)- for S , .  Similarly for n even 
the basic spin irrep A will split into an associated pair A+ and A - .  

The dimension formula for the spin irreps of S ,  has been given by Schur (1911). 
in terms of the reduced notation (A; p )  we have 

where m is the weight and r the number of parts of the partition ( p ) .  Explicitly we 
have, for example, 

21(n-4)/21 
n ( n  - l ) ( n  -2) (n  -7)(n -8)(n -9)  (2) 360 fjP:32') = 

which holds for all n with the understanding that for associated pairs it gives the 
dimension of a single member of the pair. 

3. 0, + S, branching rule for tensor irreps 

S ,  is treated as a subgroup of 0,. Consider the embedding 

E11.1(1)+(0). 

One can decompose an ordinary irrep [ A ]  of 0, into irreps of S ,  using the inner plethysm 

((l)+(O))O[AI. 

Techniques developed by King (1975) readily lead to the result 

[ A I  .1 ( l )@{A/G)  

where 

G =I ( - 1 ) ( e - r ) ' 2 { e }  
F 

where E is a self-conjugate partition of weight e with r non-zero parts. 

(3) 
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Plethysms of the type ( l ) O { p }  may be evaluated by noting that any S-function 
{ p }  may be expanded as the product of S-functions of the type (1") such that (1') = a,  
where a,  is an elementary symmetric function Z a l a 2 . .  . cy, and 

{ P I  = la/++,/ 

( l ) O {  l'} = ( lr) .  

where r-2 is the partition conjugate to p and by using the identity 

For example an irrep [321] of 0, is branched to S, in reduced notation as 

[321]+ (41)+ 2(4)+ (321)+ 3(32)+ 3(311)+9(31)+6(3)+ 3(221) 

+ 7(22)+ (21 11)+9(211)+ 15(21)+6(2)+2( 11 11)+ 6(111)+6(11)+2(1). 

The above calculation is laborious but was readily evaluated using the program SCHUR 
which rapidly evaluates reduced products. 

For a particular value of n we may convert from the reduced notation to S-functions 
of weight n. If n 2 21A1 then the resulting S-functions will be in standard form. In 
n < 2lAl then the resulting S-functions are modified using the following modification 
rules (Littlewood 1950). 

(1) In any S-function two consecutive parts may be interchanged provided that 
the preceding part is decreased by unity and the succeeding part increased by unity, 
the S-function being thereby changed in sign, i.e. 

{ A i , .  . . , A , ,  A , + 1 , .  . . , A h } = - { A i ,  . . , A,+i-I, A ,+I , .  . . , A,}. 

(2) In any S-function if any part exceeds by unity the preceding part, the value 
of the S-function is zero, i.e. 

if A , + l  = A,  + 1 then { A i , .  . * , A , ,  A , + i , .  , A k } = O .  

(3) The value of any S-function is zero if the last part is negative. As examples 
of the application of the above rules we have: 

1312) +zero {314}+ -{332} {3 - 14) + -{33} {35-11}+{44}. 

4. 0, -+ S, branching rule for spin irreps 

A spin irrep of 0, can be written as the product of the basic spin irrep and ordinary 
irreps, i.e. 

[A; A ] = A  [A/P] (4) 
where P is a S-function series (King 1975) 

~ = C ( - l ) " ( m }  
m 

where ( m )  is a partition of one part only. 

equation (3). Hence 
The ordinary irreps of 0, can be decomposed into ordinary irreps of S, using 

[A;A]~A*(l)O{A/PG}~A*(l)@{A/A} (5) 
where A is an S-function series (King 1975) 

A = C  (-l)""{c~}. 
0 
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where a is the weight of the partition and ( a )  are the partitions in Frobenius notation 
such that 

For example [A; 3211 is decomposed into S ,  as 

[A; 3211 + A *  ((41)+(4)+(321)+2(32)+2(311)+4(31)+(3)+2(221) 

+ 3(22)+(2111)+4(211)+4(21) + (2)+(1111)+ (1 11)+( 11)). 

5. Raising operators and Q-functions 

Young (1932) introduced raising operators for the calculation of the homogeneous 
product sum, h A ,  in terms of S-functions. Later on the raising operators were used 
for the evaluation of Q-functions (Littlewood 1961, Macdonald 1979). A raising 
operator 6, when operated on a partition ( A ) ,  increases A,  by one and decreases AJ by 
one provided 1 S i < j  6 k where k is the length of the partition. Hence (Thomas 1981) 

and 

More recently Luan Dehuai and Wybourne (1981) introduced a special raising 
operator 6, for the calculation of Kronecker products of the basic spin irrep with 
ordinary irreps of S ,  in reduced notation. 

The raising operators may be used to express the generalised S-functions {A}, = 
lqA,-,+,l in terms of Q-functions (Littlewood 1961, Thomas 1977, 1981) 

and vice versa 

At this stage it is important to note the following points regarding the use of raising 
operators. First of all the raising operators II,,, (1  + 6 , / )  or II,,, (1+  & - '  are not 
commutative, so it is important to keep the order. Secondly the raising operators may 
generate non-standard partitions which should be standardised after completing the 
operation. However, partitions having a negative last part cannot generate any non- 
vanishing partitions and hence may be discarded as they arise. The modification rules 
are used to standardise the non-standard partition. The rules given by Morris (Morris 
1962a, b)  are incomplete. Using equations (3.3.2)-(3.3.4) of Morris (1962a) the follow- 
ing rules have been derived. Any list of Q-functions may be converted into a list of 
standard Q-functions by sequential application of the following four rules to the list. 
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(i) The parts of the Q-function are first ordered so that the absolute magnitude of 
the parts are in descending order when read from left to right. This is achieved by 
repeated use of 

Q(.. . h , ,h ,+ , .  . . . )  = -Q[. . . h ,+l ,h , . .  . I  

whenever IAi+ll > l A i l ,  remembering that Q!p,oj = Q F ) .  

(ii) Q-functions with consecutive repeated parts are null. 
(iii) Q-functions where a negative part -A,, precedes A,, is modified by use of the 

identity 

Q ( A 1  *),,Al ,... h i )  = (-1)"'2Q,h, . . .  A A ) '  

(iv) Any remaining Q-function containing a negative part is null. 
Thus application of (i) leads to Q[304-212-ll) -+ Q(43-221-11). Application of (i i)  then 

Likewise one readily finds that 
leads to Q(43-221-ll)* -4Qi431) and hence Q~304-212-11) = -4Q(431). 

Q(1003-ll)~2Q(31) Q(3211)'Zer0 

Q(32-221-11) ' -4% j Q(320-212-11) + -4(?(3213. 

We note in the above examples that it is possible to have repeated parts provided 
they are separated by a negative part of the same magnitude. Inspection of equation 
( 2 )  gives the dimension results 

A;321) - f: - 0  Ji4A:321) = -4 f5A;321) = -4 j$&32l) = -4 

which are respectively consistent with the Q-function equivalences 

Q(-2321) = -2Q(31) 

Q(0321) = -Q(321) and Qi1321)=0* 

Q(-1321) = -2Q(32) 

6. Completion of the 0, + S ,  spin branching rule 

In the previous sections we have developed the technique of branching an irreducible 
spin representation of 0, to S ,  in the form of the product of the basic spin irrep and 
ordinary irreps of S,.  In order to combine the basic spin irrep and the ordinary irreps 
we note that the spin characters of S ,  are related to the Q-functions (Schur 1911) as 

where l[,";^] is a simple spin character of the class ( 7 ~ )  = (1*13"3.. .) involving odd 
cycles only, p = al  + a,+. . . , h,  is the order of the class ( T ) ,  h is the order of r,, 
S,  = SPIS~U~. . . and E = 0 or 1 according as (n  - k) is even or odd. 

Now the problem is the resolution of the inner product of Q-functions with 
S-functions {A}/,. We note that products of this type will produce S-functions {A}, 
which in turn can be changed into Q-functions using ( 6 )  (Luan Dehuai and Wybourne 
1981). So we have 

where Q(,) represents the n-dependent basic spin irrep. In reduced notation the above 
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equation is written as 

and  we have noted the theorems and lemmas of Thomas (1977) together with the fact 

Equation (10) gives us a set of Q-functions. These Q-functions can be converted 
into the irreducible spin representations of any particular group of S, by making use 
of the following. 

that QW = 9,. 

(i) Replace every Q-function by (A; p). 
(ii) Multiply them by a factor 2‘‘k-n(mod2))’21. 
If (n - k - 1) is odd then modify as 

{A; p } = { A ;  p } + + { A ;  P I - .  (11) 
Thus our final algorithm for evaluating the branching rule 0, + S, for spin irreps 

(1) Evaluate the terms, in reduced notation, contained in 
[A;  A ]  of 0, is as follows. 

(1)@{AIAl. 
(2) Apply the raising operator n( 1 + a,,) to the terms produced in (1) and standar- 

dise the resulting partitions as Q-functions and then replace each Q-function Qh)  by 

(3) For a particular value of n multiply each (A;  A )  by 2‘(k-n(mod2”’21 and replace 
(A; A )  by {A; A }  and modify using (11). 
The above algorithm has been incorporated in the program SCHUR. The branching 
rule is calculated first performing steps (1) and (2) to yield an  n-independent list of 
(A; A ) .  Thus for [A; 4321 we obtain the list given below: 

2(A; 71)+ lO(A; 7)+(A; 63)+(A; 621)+ 14(A; 62)+47(A; 61)+93(A; 6) 

(A; A) .  

+ ( A ;  54)+2(A; 531)+22(A; 53)+ 14(A; 521)+ 118(A; 52)+234(A; 51) 

+312(A; 5)+(A; 432)+ 13(A; 431)+76(A; 43)+56(A; 421)+328(A; 42) 

+ 506(A; 41)+544(A; 4)+71(A; 321)+350(A; 32)+556(A; 31)+ 560(A; 3) 

+282(A; 21)+350(A; 2)+ 124(A; 1)+38(A; 0). 

This is a universal list in the sense that once it is calculated it holds for all n. It is 
step (3) that specialises the list to a particular value of n. We give below the cases of 
n = 16 and 17. 

Group is O(16) 

Group is S(16) 

4{A; 71}++4{A; 71}-+20{A; 7}+2{A; 63}++2{A; 63}-+4{A; 621) 

+ dim[A; 4321 = 4635 158 528. 

+28{A; 62}++28{A; 62}-+94{A; 61}++94{A; 61)- 

+ 186{A; 6}+2{A; 54}++2{A; 54}-+8{A; 531}+44{A; 53}++44{A; 53)- 

+56{A; 521)+236{A; 52}++236{A; 52}-+468{A; 51}++468{A; 51}- 

+624{A; 5}+4{A; 432}+52{A; 431}+ 152{A; 43)++ 152{A; 43)- 

+224{A; 421}+656{A; 42}++656{A; 42}-+ 1012{A; 41)++ 1012{A; 41)- 
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+lO88{A; 4}+284{A; 321}+700{A; 32}++700{A; 32}-+ 1112{A; 31}+ 

+ 1112{A; 31}-+1120{A; 3}+564{A; 21}++564{A; 21}-+700{A; 2) 

+248{A; 1}+38{A; 0}++38{A; O}-. 

Dimension = 4635 158 528. 

Group is O(17) 

Group is S(17) 

4{A; 71}+ 10{A; 7}++ 10{A; 7}-+2{A; 63}+2{A; 621}++2{A; 621}-+28{A; 62) 

+ dim[A; 4321 = 8364 195 840. 

+ 94{A; 61) + 93{A; 6}+ + 93{A; 6)- + 2{A; 54) + 4{A; 53 1}+ + 4{A; 53 1}- 

+44{A; 53}+28{A; 521}++28{A; 521}-+236{A; 52}+468{A; 51} 

+312{A; 5}++312{A; 5}-+2{A; 432}++2{A; 432}-+26{A; 431}+ 

+26{A; 43}-+ 152{A; 43}++ 112{A; 421}++ 112{A; 421}-+656{A; 42} 
+1012{A; 41}+544{A; 4}++544{A; 4}-+142{A; 321}++ 142{A; 321}- 

+700{A; 32}+ 1112{A; 31}+560{A; 3}++560{A; 3}-+564{A; 21) 

+ 350{A; 2}+ + 350{A; 2)- + 124{A; I}+ + 124{A; 1}- + 38{A; O}. 

Dimension = 8364 195 840. 

These rather large examples show the power of the methods outlined which avoid all 
use of character tables. 

It is worth noting that Stembridge (1989) has given an alternative presentation for 
the inner product of the basic spin irrep with an arbitrary tensor irrep of S ,  that avoids 
the need for modification rules. 

8. Concluding remarks 

We have completed the statement of the modification rules for Q-functions and stated 
systematic algorithms for evaluating 0, + S, ,  branching rules for both ordinary and 
spin irreps of 0,. 
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